Функции компьютера. Как компьютер работает с информацией? Назначение и устройство компьютера

06.04.2024

Компьютер как универсальное устройство обработки информации

Назначение и устройство компьютера

Что общего между компьютером и человеком

Для информатики компьютер - это не только инструмент для работы с информацией, но и объект изучения. Вы узнаете, как компьютер устроен, какую работу с его помощью можно выполнять, какие для этого существуют программные средства.

С давних времен люди стремились облегчить свой труд. С этой целью создавались различные машины и механизмы, усиливающие физические возможности человека. Компьютер был изобретен в середине XX века для усиления возможностей умственной работы человека, т. е. работы с информацией.

Из истории науки и техники известно, что идеи многих своих изобретений человек "подглядел" в природе.

Например, еще в XV веке великий итальянский ученый и художник Леонардо да Винчи изучал строение тел птиц и использовал эти знания для конструирования летательных аппаратов.

Русский ученый Н. Е. Жуковский, основоположник аэродинамики, также исследовал механизм полета птиц. Результаты этих исследований используются при расчетах конструкций самолетов.

Можно сказать, что Леонардо да Винчи и Жуковский "списывали" свои летающие машины с птиц.

А есть ли в природе прототип у компьютера? Да! Таким прототипом является сам человек. Только изобретатели стремились передать компьютеру не физические, а интеллектуальные возможности человека.

По своему назначению компьютер - универсальное техническое средство для работы человека с информацией.

По принципам устройства компьютер - это модель человека, работающего с информацией.

Какие устройства входят в состав компьютера. Имеются четыре основные составляющие информационной функции человека:

    прием (ввод) информации;
    запоминание информации (сохранение в памяти);
    процесс мышления (обработка информации);
    передача (вывод) информации.

Компьютер включает в себя устройства, выполняющие эти функции мыслящего человека:

    устройства ввода;
    устройства запоминания - память;
    устройство обработки - процессор;
    устройства вывода.

В ходе работы компьютера информация через устройства ввода попадает в память; процессор извлекает из памяти обрабатываемую информацию, работает с ней и помещает в нее результаты обработки; полученные результаты через устройства вывода сообщаются человеку. Чаще всего в качестве устройства ввода используется клавиатура, а устройства вывода - экран дисплея или принтер (устройство печати) (рис. 2.2).


Рис. 2.2. Информационный обмен в компьютере

Что такое данные и программа. И все-таки нельзя отождествлять "ум компьютера" с умом человека. Важнейшее отличие состоит в том, что работа компьютера строго подчинена заложенной в него программе, человек же сам управляет своими действиями.

В памяти компьютера хранятся данные и программы.

Данные - это обрабатываемая информация, представленная в памяти компьютера в специальной форме. Немного позже вы познакомитесь со способами представления данных в компьютерной памяти.

Программа - это описание последовательности действий, которые должен выполнить компьютер для решения поставленной задачи обработки данных.

Если информация для человека - это знания, которыми он обладает, то информация для компьютера - это данные и программы, хранящиеся в памяти. Данные - это "декларативные знания", программы - "процедурные знания компьютера".

Принципы фон Неймана. В 1946 году американским ученым Джоном фон Нейманом были сформулированы основные принципы устройства и работы ЭВМ. Первый из этих принципов определяет состав устройств ЭВМ и способы их информационного взаимодействия. Об этом говорилось выше. С другими принципами фон Неймана вам еще предстоит познакомиться.

Вопросы и задания

    1. Какие возможности человека воспроизводит компьютер?
    2. Перечислите основные устройства, входящие в состав компьютера. Какое назначение каждого из них?
    3. Опишите процесс обмена информацией между устройствами компьютера.
    4. Что такое компьютерная программа?
    6. Чем отличаются данные от программы?

Компьютерная память

Внутренняя и внешняя память. Работая с информацией, человек пользуется не только своими знаниями, но и книгами, справочниками и другими внешними источниками. В главе 1 "Человек и информация" ныло отмечено, что информация хранится в памяти человека и на внешних носителях. Заученную информацию человек может забыть, а записи сохраняются надежнее.

У компьютера тоже есть два вида памяти: внутренняя (оперативная) и внешняя (долговременная) память.

Внутренняя память - это электронное устройство, которое хранит информацию, пока питается электроэнергией. При отключении компьютера от сети информация из оперативной памяти исчезает. Программа во время ее выполнения хранится во внутренней памяти компьютера. Сформулированное правило относится к принципам Неймана. Его называют принципом хранимой программы.

Внешняя память - это различные магнитные носители (ленты, диски), оптические диски. Сохранение информации на них не требует постоянного электропитания.

На рис. 2.3 показана схема устройства компьютера с учетом двух видов памяти. Стрелки указывают направления информационного обмена.

Наименьший элемент памяти компьютера называется битом памяти. На рис. 2.4 каждая клетка изображает бит. Вы видите, что у слова "бит" есть два значения: единица измерения количества информации и частица памяти компьютера. Покажем, как связаны между собой эти понятия.

В каждом бите памяти может храниться в данный момент одно из двух значений: нуль или единица. Использование двух знаков для представления информации называется двоичной кодировкой .

Данные и программы в памяти компьютера хранятся в виде двоичного кода.

Один символ двухсимвольного алфавита несет 1 бит информации.

В одном бите памяти содержится один бит информации.

Битовая структура определяет первое свойство внутренней памяти компьютера - дискретность . Дискретные объекты составлены из отдельных частиц. Например, песок дискретен, так как состоит из песчинок. "Песчинками" компьютерной памяти являются биты.

Второе свойство внутренней памяти компьютера - адресуемость . Восемь расположенных подряд битов памяти образуют байт. Вы знаете, что это слово также обозначает единицу количества информации, равную восьми битам. Следовательно, I одном байте памяти хранится один байт информации.

Во внутренней памяти компьютера все байты пронумерованы. Нумерация начинается с нуля.

Порядковый номер байта называется его адресом.

Принцип адресуемости означает, что:

Запись информации в память, а также чтение ее из памяти производится по адресам.

Память можно представить как многоквартирный дом, в котором каждая квартира - это байт, а номер квартиры - адрес. Для того чтобы почта дошла по назначению, необходимо указать правильный адрес. Именно так, по адресам, обращается процессор к внутренней памяти компьютера.

В современных компьютерах имеется еще один вид внутренней памяти, который называется постоянным запоминающим устройством - ПЗУ. Это энергонезависимая память, информация из которой может только читаться.

Носители и устройства внешней памяти. Устройства внешней памяти - это устройства чтения и записи информации на внешние носители. Информация на внешних носителях хранится в виде файлов. Что это такое, подробнее вы узнаете позже.

Важнейшими устройствами внешней памяти на современных компьютерах являются накопители на магнитных дисках (НМД), или дисководы .

Кто не знает, что такое магнитофон? На магнитофон мы привыкли записывать речь, музыку, а затем прослушивать записи. Звук записывается на дорожках магнитной ленты с помощью магнитной головки. С помощью этого же устройства магнитная запись снова превращается в звук.

НМД действует аналогично магнитофону. На дорожки диска записывается все тот же двоичный код: намагниченный участок - единица, ненамагниченный - нуль. При чтении с диска эта запись превращается в нули и единицы в битах внутренней памяти.

К магнитной поверхности диска подводится записывающая головка (рис. 2.5), которая может перемещаться по радиусу. Во время работы НМД диск вращается. В каждом фиксированном положении головка взаимодействует с круговой дорожкой. На эти концентрические дорожки и производится запись двоичной информации.

Рис. 2.5. Дисковод и магнитный диск

Другим видом внешних носителей являются оптические диски (другое их название - лазерные диски). На них используется не магнитный, а оптико-механический способ записи и чтения информации.

Сначала появились лазерные диски, на которые информация записывается только один раз. Стереть или перезаписать ее невозможно. Такие диски называются CD-ROM - Compact Disk-Read Only Memory, что в переводе значит "компактный диск - только для чтения". Позже были изобретены перезаписываемые лазерные диски - CD-RW. На них, как и на магнитных носителях, хранимую информацию можно стирать и записывать заново.

Носители, которые пользователь может извлекать из дисковода, называют сменными.

Наибольшей информационной емкостью из сменных носителей обладают лазерные диски типа DVD-ROM - видеодиски. Объем информации, хранящейся на них, может достигать десятков гигабайтов. На видеодисках записываются полноформатные видеофильмы, которые можно просматривать с помощью компьютера, как по телевизору.

Вопросы и задания

1. Постарайтесь объяснить, зачем компьютеру нужны два вида памяти: внутренняя и внешняя.
2. Что такое "принцип хранимой программы"?
3. В чем заключается свойство дискретности внутренней памяти ЭВМ?
4. Какие два значения имеет слово "бит"? Как они связаны между собой?
5. В чем заключается свойство адресуемости внутренней памяти ЭВМ?
6. Назовите устройства внешней памяти ЭВМ.
7. Какие типы оптических дисков вы знаете?

Как устроен персональный компьютер (ПК)

Что такое ПК. Современные ЭВМ бывают самыми разными: от больших, занимающих целый зал, до маленьких, помещающихся на столе, в портфеле и даже в кармане. Разные ЭВМ используются для разных целей. Сегодня самым массовым видом ЭВМ являются персональные компьютеры. Персональные компьютеры (ПК) предназначены для личного (персонального) использования.

Несмотря на разнообразие моделей ПК, в их устройстве существует много общего. Об этих общих свойствах и пойдет сейчас речь.

Основные устройства ПК. Основной "деталью" персонального компьютера является микропроцессор (МП). Это миниатюрная электронная схема, созданная путем очень сложной технологии, выполняющая функцию процессора ЭВМ.

Персональный компьютер представляет собой набор взаимосвязанных устройств. Главным в этом наборе является системный блок . В системном блоке находится "мозг" машины: микропроцессор и внутренняя память. Там же помещаются: блок электропитания, дисководы, контроллеры внешних устройств. Системный блок снабжен внутренним вентилятором для охлаждения.

Системный блок обычно помещен в металлический корпус, с наружной стороны которого имеются: клавиша включения электропитания, щели для установки сменных дисков и дисковые устройства, разъемы для подключения внешних устройств.

К системному блоку подключены клавишное устройство (клавиатура), монитор (другое название - дисплей) и мышь (манипулятор). Иногда используются другие типы манипуляторов: джойстик, трекбол и пр. Дополнительно к ПК могут быть подключены: принтер (устройство печати), модем (для выхода на телефонную линию связи) и другие устройства (рис. 2.6).

На рис. 2.6 показана настольная модель ПК. Кроме того, существуют портативные модели (ноутбуки) и карманные компьютеры.

Все устройства ПК, кроме процессора и внутренней памяти, называются внешними устройствами . Каждое внешнее устройство взаимодействует с процессором ПК через специальный блок, который называется контроллером (от английского "controller" - "контролер", "управляющий"). Существуют контроллер дисковода, контроллер монитора, контроллер принтера и др. (рис. 2.7).

Магистральный принцип взаимодействия устройств ПК. Принцип, по которому организована информационная связь между процессором, оперативной памятью и внешними устройствами, похож на принцип телефонной связи. Процессор через многопроводную линию, которая называется магистралью (другое название - шина ), связывается с другими устройствами (рис. 2.8).

Подобно тому как каждый абонент телефонной сети имеет свой номер, каждое подключаемое к ПК внешнее устройство также получает номер, который выполняет роль адреса этого устройства. Информация, передаваемая внешнему устройству, сопровождается его адресом и подается на контроллер. В данной аналогии контроллер подобен телефонному аппарату, который преобразует электрический сигнал, идущий по проводам, в звук, когда вы слушаете телефон, и преобразует звук в электрический сигнал, когда вы говорите.

Магистраль - это кабель, состоящий из множества проводов. Характерная организация магистрали такая: по одной группе проводов (шина данных ) передается обрабатываемая информация, по другой (шина адреса ) - адреса памяти или внешних устройств, к которым обращается процессор. Есть еще третья часть магистрали - шина управления ; по ней передаются управляющие сигналы (например, проверка готовности устройства к работе, сигнал к началу работы устройства и др.).

Вопросы и задания

    1. Назовите минимальный комплект устройств, составляющих персональный компьютер.
    2. Какие устройства входят в состав системного блока?
    3. Что такое контроллер? Какую функцию он выполняет?
    4. Как физически соединены между собой различные устройства ПК?
    5. Как информация, передаваемая по шине, попадает на нужное устройство?

Основные характеристики персонального компьютера

Все чаще персональные компьютеры используются не только на производстве и в учебных заведениях, но и в домашних условиях. Их можно купить в магазине так же, как покупают телевизоры, видеомагнитофоны и другую бытовую технику. При покупке любого товара желательно знать его основные характеристики, для того, чтобы приобрести именно то, что вам нужно. Такие основные характеристики есть и у ПК.

Характеристики микропроцессора. Существуют различные модели микропроцессоров, выпускаемые разными фирмами. Основными характеристиками МП являются тактовая частота и разрядность процессора.

Режим работы микропроцессора задается микросхемой, которая называется генератором тактовой частоты . Это своеобразный метроном внутри компьютера. На выполнение процессором каждой операции отводится определенное количество тактов. Ясно, что если метроном "стучит" быстрее, то и процессор работает быстрее. Тактовая частота измеряется в мегагерцах - МГц. Частота в 1 МГц соответствует миллиону тактов в одну секунду. Вот некоторые характерные тактовые частоты микропроцессоров: 600 МГц, 800 МГц, 1000 МГц. Последняя величина называется гигагерцем - ГГц. Современные модели микропроцессоров работают с тактовыми частотами в несколько гигагерц.

Следующая характеристика - разрядность процессора. Разрядностью называют максимальную длину двоичного кода, который может обрабатываться или передаваться процессором целиком. Разрядность процессоров на первых моделях ПК была равна 8 битам. Затем появились 16-разрядные процессоры. На современных ПК чаще всего используются 32-разрядные процессоры. Наиболее высокопроизводительные машины имеют процессоры с разрядностью 64 бита.

Объем внутренней (оперативной) памяти. Про память компьютера мы уже говорили. Она делится на оперативную (внутреннюю) память и долговременную (внешнюю) память. Производительность машины очень сильно зависит от объема внутренней памяти. Если для работы каких-то программ не хватает внутренней памяти, то компьютер начинает переносить часть данных во внешнюю память, что резко снижает его производительность. Скорость чтения/записи данных в оперативную память на несколько порядков выше, чем во внешнюю.

Объем оперативной памяти влияет на производительность компьютера. Современные программы требуют оперативной памяти объемом в десятки и сотни мегабайтов.

Для хорошей работы современных программ требуется оперативная память в сотни мегабайтов: 128 Мб, 256 Мб и более.

Характеристики устройств внешней памяти. Устройства внешней памяти - это накопители на магнитных и оптических дисках. Встроенные в системном блоке магнитные диски называются жесткими дисками, или винчестерами. Это очень важная часть компьютера, поскольку именно здесь хранятся все необходимые для работы компьютера программы. Чтение/запись на жесткий диск производится быстрее, чем на все другие виды внешних носителей, но все-таки медленнее, чем в оперативную память. Чем больше объем жесткого диска, тем лучше. На современных ПК устанавливают жесткие диски, объем которых измеряется и гигабайтах: десятки и сотни гигабайтов. Покупая компьютер, вы приобретаете и необходимый набор программ на жестком диске. Обычно покупатель сам заказывает состав программного обеспечения компьютера.

Все остальные носители внешней памяти - сменные, г. е. их можно вставлять в дисковод и доставать из дисковода. К ним относятся гибкие магнитные диски - дискеты и оптические диски - CD-ROM, CD-RW, DVD-ROM. Стандартная дискета вмещает 1,4 Мб информации. Дискеты удобны для длительного хранения программ и данных, а также для переноса информации с одного компьютера на другой.

В последнее время на смену гибким дискам как основному средству переноса информации с одного компьютера на другой приходит флэш-память. Флэш-память - это электронное устройство внешней памяти, используемое для чтения и записи информации в файловом формате. Флэш-память, как и диски, - энергонезависимое устройство. Однако, по сравнению с дисками, флэш-память обладает гораздо большим информационным объемом (сотни и тысячи мегабайтов). А скорость чтения и записи данных на флэш-носителе приближается к скорости работы оперативной памяти.

Практически обязательной составляющей комплекта ПК стали дисководы для CD-ROM. Современное программное обеспечение распространяется именно на этих носителях. Вместимость CD-ROM исчисляется сотнями мегабайтов (стандартный объем - 700 Мб).

DVD-дисководы вы можете приобретать по собственному желанию. Объем данных на дисках этого типа исчисляется гигабайтами (4,7 Гб, 8,5 Гб, 17 Гб). Часто на DVD-дисках записываются видеофильмы. Время их воспроизведения достигает 8 часов. Это 4-5 полноформатных фильмов. Пишущие оптические дисководы позволяют производить запись и перезапись информации на CD-RW и DVD-RW. Постоянное снижение цен на перечисленные виды устройств переводит их из категории "предметов роскоши" в общедоступные.

Все остальные типы устройств относятся к числу устройств ввода/вывода. Обязательными из них являются клавиатура, монитор и манипулятор (обычно - мышь). Дополнительные устройства: принтер, модем, сканер, звуковая система и некоторые другие. Выбор этих устройств зависит от потребностей и финансовых возможностей покупателя. Всегда можно найти источники справочной информации о моделях таких устройств и их эксплуатационных свойствах.

Вопросы и задания

    1. От каких характеристик компьютера зависит его производительность?
    2. Информационный объем какого порядка имеют: гибкие диски, винчестеры, CD-ROM, DVD-ROM?
    3. Какие устройства памяти являются встроенными, какие - сменными?
    4. Какие устройства ввода/вывода являются обязательными для ПК, какие - дополнительными?

Случай на экзамене.
Профессор. Как работает трансформатор?
Студент. У-у-у-у-у-у-у-у-у-у-у-у-у-у…

Мы давно уже привыкли к персональным . Включаем их и работаем, собственно говоря, ни мало не задумываясь над тем, как они устроены и как работают. Все это благодаря тому, что разработчики ПК и программного обеспечения к ним научились создавать надежные продукты, которые не дают нам повода лишний раз задуматься над устройством компьютера или обслуживающих его программ.

Тем не менее, вероятно, читателям блога небезынтересно узнать о принципах работы компьютера и программного обеспечения. Этому и будет посвящена серия статей, которые публикуются в рубрике «Как работает ПК».

Как работает ПК: часть 1. Обработка информации

Компьютер для автоматизации процессов обработки информации. Он устроен соответствующим образом, чтобы иметь все возможности для успешного выполнения своего предназначения.

Для того чтобы обрабатывать в компьютере информацию, с ней необходимо делать следующие основные операции:

вводить информацию в компьютер:

Эта операция нужна для того, чтобы компьютеру было что обрабатывать. Без возможности ввода информации в компьютер он становится как бы вещью в себе.

хранить введенную информацию в компьютере:

Очевидно, что если дать возможность вводить информацию в компьютер, то надо и иметь возможность эту информацию в нем хранить, и затем использовать в процессе обработки.

обрабатывать введенную информацию:

Здесь надо понимать, что для обработки введенной информации нужны определенные алгоритмы обработки, иначе ни о какой обработке информации речи быть не может. Компьютер должен быть снабжен такими алгоритмами и должен уметь их применять к вводимой информации с тем, чтобы «правильно» преобразовывать ее в выходные данные.

хранить обработанную информацию ,

Так же как и с хранением введенной информации, в компьютере должны храниться результаты его работы, результаты обработки входных данных с тем, чтобы в дальнейшем ими можно было бы воспользоваться.

выводить информацию из компьютера :

Эта операция позволяет вывести результаты обработки информации в удобочитаемом для пользователей ПК виде. Понятно, что данная операция дает возможность воспользоваться результатами обработки информации на компьютере, иначе эти результаты обработки так и остались бы внутри компьютера, что сделало бы их получение совершенно бессмысленным.

Самое важное умение компьютера – это обработка информации, так как его прелесть как раз и состоит в том, что он может информацию преобразовывать. Все устройство компьютера обусловлено требованием обработки информации в кратчайшие сроки, наиболее быстрым способом.

Под обработкой информации на компьютере можно понимать любые действия, которые преобразуют информацию из одного состояния в другое. Соответственно, компьютер имеет специальное устройство, называемое , которое предназначено исключительно для чрезвычайно быстрой обработки данных, со скоростями, доходящими до миллиардов операций в секунду.

Процессор

Требуемые для обработки данные процессор получает (берет) из – от устройства, предназначенного для временного хранения как входных, так и выходных данных. Там же в оперативной памяти находится и место для хранения промежуточных данных, формируемых в процессе обработки информации. Таким образом, процессор как получает данные из оперативной памяти, так и записывает обработанные данные в оперативную память.

Оперативная память (ОЗУ)

Наконец, для ввода и вывода данных к компьютеру подключаются , которые позволяют вводить информацию, подлежащую обработке, и выводить результаты этой обработки.

Внешний винчестер, внешнее DVD-устройство, флешка, клавиатура, мышь

Процессор и оперативная память работают с одинаково большой скоростью. Как уже говорилось выше, скорость обработки информации может составлять многие миллионы и миллиарды операций в секунду. Никакое внешнее устройство ввода и вывода информации не может работать на таких скоростях.

Поэтому для их подключения в компьютере предусмотрены специальные контроллеры устройств ввода-вывода . Их задача состоит в том, чтобы согласовать высокие скорости работы процессора и оперативной памяти с относительно низкими скоростями ввода и вывода информации.

Эти контроллеры подразделяются на специализированные, к которым могут быть подключены только специальные устройства, и универсальные. Примером специализированного устройства контроллера служит, например, видеокарта, которая предназначена для подключения к компьютеру монитора.

Виды информации, обрабатываемые компьютером (числовая, символьная, графическая, звуковая).

Как мы хорошо знаем, вычислительная техника первоначально возникла как средство автоматизации вычислений, о чем совершенно недвусмысленно говорит название ЭВМ. Следующим видом обрабатываемой информации стала текстовая. Сначала тексты просто поясняли труднообозримые столбики цифр, но затем машины все более и более существенным образом стали преобразовывать текстовую информацию. Обязательной частью программного обеспечения стал текстовой редактор. Естественно, что оформление текстов достаточно быстро вызвали у людей стремление дополнить их графиками и рисунками. Делались попытки частично решить эти проблемы в рамках символьного подхода: вводились специальные символы для рисования таблиц и диаграммам.

Целые числа. Как мы уже знаем, этот тип информации является дискретным и преобразуется для хранения в компьютере довольно просто: достаточно перевести число в двоичную систему счисления.

Символы. Это еще одна дискретная величина, поскольку компьютер оперирует с определенным ограниченным набором символов. Такой набор вполне можно назвать алфавитом машины, а в алфавите все символы имеют свои фиксированные позиции. Отсюда основная идея хранения символов в памяти ЭВМ состоит в замене каждого из них номером в алфавите, т.е. числом.

Графика. Любое графическое изображение состоит из отдельных точек, называемых пикселями. Отсюда становится понятным, что сохранить изображение фактически означает сохранить цвета его пикселей. Если принять конечное (ограниченное) число цветов, то информация немедленно становится дискретной и решение задачи сохранения графики становится похожей на только что рассмотренную задачу сохранения текста. Нужно каким-либо образом пронумеровать все цвета (создать своеобразный "алфавит цветов"), после чего достаточно просто сохранять номера цветов.

Как и для символов, помимо описанного выше "поточечного" (растрового) хранения изображения, существует еще и векторный метод. Для него сохраняется не полная матрица пикселей, а программа его рисования

Звук. Звуковая информация также является величиной непрерывной, и, следовательно, для ввода в ЭВМ нуждается в дискретизации. Причем дискретизация должна производится как по времени, так и по величине интенсивности звука. Первый процесс означает, что замеры интенсивности должны производится не непрерывно, а через определенные промежутки времени, а второй - что интенсивность звука, которая в природе может принимать какие угодно значения, должна быть "подтянута" ("округлена") к ближайшему из стандартного набора фиксированных значений. При такой процедуре мы снова получаем последовательность целых чисел, которые и сохраняются в памяти ЭВМ. Таким образом, и в случае звука информацию удается описать определенным образом сформированной последовательностью чисел, что автоматически решает проблему кодирования.

Не нуждаются в дискретизации целые числа и символы, а вещественные числа, графическая и звуковая информация для ввода в компьютер требуют определенных процедурах ввода, которые преобразуют эти виды информации в дискретную форму.

Информация любого вида хранится в компьютере в двоичном виде.

Процесс кодирования любого вида информации фактически представляет собой его преобразование тем или иным способом в числовую форму.

В памяти машины не существует принципиального различия между закодированной информацией различных типов. Над всеми видами данных, включая дополнительно и саму программу, процессор способен производить арифметические, логические и прочие операции, которые содержатся в системе его команд.

Вся информация, поступающая к человеку, состоит из сигналов. Известно, что таких сигналов человек получает значительно больше, чем в состоянии обработать его мозг. Кроме того, человек так устроен, что он:

  • не может воспринять непонятную ему информацию;
  • необъективен, т. е. зачастую воспринимает информацию не такой, какая она есть, а такой, какой она ему кажется;
  • быстро устаёт и может ошибаться, обрабатывая информацию;
  • не может долго хранить информацию: если не закреплять знания постоянными упражнениями, информация очень быстро забывается.

Справляться с этими проблемами человеку помогает компьютер. Он облегчает умственный труд человека, помогает справиться с гигантскими объёмами информации.

Сегодня компьютер является незаменимым помощником человека в любой сфере деятельности. Без компьютеров невозможно представить себе работу банков, магазинов, больниц, школ, других учреждений. Без компьютеров не обойтись при подготовке к изданию книг и журналов, в научных и инженерных расчётах, при создании спецэффектов в кино и на телевидении и во многих других случаях. С помощью компьютера человек может рисовать, слушать мелодии, смотреть мультфильмы и делать многое другое.

В Единой коллекции цифровых образовательных ресурсов (sc.edu.ru) размещена анимация «Компьютер, его роль в жизни человека». Она позволит вам сравнить задачи, решаемые с помощью компьютеров несколько десятилетий тому назад и в наши дни.

Объект, пригодный для многих целей, выполняющий разнообразные функции, называют универсальным.

Самую разнообразную информацию, представленную в форме, пригодной для обработки компьютером, называют данными. За малое время компьютер способен обработать большое количество данных.

Компьютер обрабатывает данные по заданным программам.

В отличие от человека компьютер не может думать. Он выполняет только то, что ему предписано. Часто говорят о компьютерных ошибках, но, как правило, это ошибки людей, разработавших неверные программы для компьютера.

Как устроен компьютер

Главным в компьютере является системный блок, включающий в себя процессор, устройства оперативной памяти (микросхемы памяти), жёсткий диск, блок питания и др. (рис. 2).

Рис. 2

Заглянуть внутрь системного блока вы можете с помощью интерактивного ресурса «Составляющие системного блока», размещённого в Единой коллекции цифровых образовательных ресурсов (sc.edu.ru). Процессор предназначен для обработки данных и управления работой компьютера.

Память компьютера служит для хранения данных и делится на оперативную и долговременную.

В оперативную память помещаются все программы и данные, необходимые для работы компьютера. Процессор может мгновенно обращаться к информации, находящейся в оперативной памяти. После отключения источника питания вся информация, содержащаяся в оперативной памяти, теряется.

Для длительного хранения информации используется жёсткий диск - устройство долговременной памяти.

Дополнительную информацию о жёстком диске и других устройствах долговременной памяти читайте в электронном приложении к учебнику.

Клавиатура применяется для ввода информации в память компьютера.

Монитор предназначен для вывода информации на экран или, ещё говорят, для отображения информации на экране.

Мышь - одно из основных устройств ввода, предназначенное для управления компьютером.

К персональному компьютеру могут подключаться дополнительные устройства:

  • джойстик (для управления компьютером во время игры);
  • сканер (для ввода графических изображений в память компьютера непосредственно с бумажного оригинала);
  • микрофон (для ввода звуковой информации);
  • принтер (для вывода информации на бумагу);
  • акустические колонки или наушники (для вывода звуковой информации).

Существуют и другие устройства. Все они составляют аппаратное обеспечение компьютера.

Запомнить внешний вид и названия компьютерных устройств вам поможет игра «Пары» из электронного приложения к учебнику.

Техника безопасности и организация рабочего места

ЗАПОМНИТЕ! К каждому рабочему месту подведено опасное для жизни напряжение.

Во время работы следует быть предельно внимательным.

Во избежание несчастного случая, поражения электрическим током, поломки оборудования рекомендуется соблюдать следующие правила:

  • Входите в компьютерный класс спокойно, не торопясь, не толкаясь, не задевая мебель и оборудование, и только с разрешения учителя.
  • Не включайте и не выключайте компьютеры без разрешения учителя.
  • Не трогайте электрические провода и разъёмы соединительных кабелей.
  • Не прикасайтесь к экрану и тыльной стороне монитора.
  • Не размещайте на рабочем месте посторонние предметы.
  • Не вставайте со своих мест, когда в кабинет входят посетители.
  • Не пытайтесь самостоятельно устранять неисправности в работе аппаратуры; при неполадках и сбоях в работе компьютера немедленно прекратите работу и сообщите об этом учителю.
  • Работайте на клавиатуре чистыми, сухими руками; легко нажимайте на клавиши, не допуская резких ударов и не задерживая клавиши в нажатом положении.

ЗАПОМНИТЕ! Если не принимать мер предосторожности, работа за компьютером может оказаться вредной для здоровья.

Чтобы не навредить своему здоровью, необходимо соблюдать ряд простых рекомендаций:

  • Неправильная посадка за компьютером может стать причиной боли в плечах и пояснице. Поэтому садитесь свободно, без напряжения, не сутулясь, не наклоняясь и не наваливаясь на спинку стула. Ноги ставьте прямо на пол, одна возле другой, не вытягивайте их и не подгибайте (рис. 3).

Рис. 3

  • Если стул позволяет регулировать высоту, то её следует отрегулировать так, чтобы угол между плечом и предплечьем был чуть больше прямого. Туловище должно находиться от стола на расстоянии 15-16 см. Линия взора должна быть направлена в центр экрана. Если вы имеете очки для постоянного ношения, работайте в очках.
  • Плечи при работе должны быть расслаблены, локти - слегка касаться туловища. Предплечья должны находиться на той же высоте, что и клавиатура.
  • При напряжённой длительной работе глаза переутомляются, поэтому каждые 5 минут отрывайте взгляд от экрана и смотрите на что-нибудь, находящееся вдали.

Самое главное

Изучением всевозможных способов передачи, хранения и обработки информации занимается наука информатика. Хранить, обрабатывать и передавать информацию человеку помогает компьютер - универсальная машина для работы с информацией.

В аппаратном обеспечении компьютера различают устройства ввода, обработки, хранения и вывода информации. Устройства ввода информации - это клавиатура, мышь, сканер, микрофон и др. Устройство обработки информации - процессор. Устройства хранения информации - оперативная память, внешняя память на жёстких дисках. Устройства вывода информации - монитор, принтер, акустические колонки.

При работе за компьютером необходимо быть предельно внимательным и соблюдать все требования техники безопасности, следить за правильной организацией своего рабочего места.

Вопросы и задания

  1. Для чего человеку понадобился компьютер?
  2. Что означает слово «универсальный»? Почему компьютер является универсальной машиной для работы с информацией?
  3. Какими «профессиями» владеет компьютер? Подготовьте краткое сообщение об одной из них.
Вам будет легче ответить на этот вопрос после просмотра презентации «Компьютер на службе у человека», входящей в состав электронного приложения к учебнику.
  1. Вспомните известные вам компьютерные программы. Для чего они предназначены?
  2. Что изучает наука информатика?
  3. Из каких основных устройств состоит компьютер?
  4. Как называется устройство обработки информации?
  5. Какие вы знаете устройства хранения информации?
  6. Скорее всего, ваши компьютеры уже не работают с дискетами - гибкими магнитными дисками, помещёнными в защитный пластиковый корпус. Но практически в каждой компьютерной программе, предназначенной для создания информации того или иного вида, есть команды, графическим образом которых является дискета. Какие это команды?
  7. Что входит в состав аппаратного обеспечения компьютера?
  8. Какие правила техники безопасности необходимо соблюдать в компьютерном классе?
  9. Как правильно организовать своё рабочее место за компьютером?

Вот мы уже познакомились с устройством компьютера… Но так и не поняли главного – как именно он работает? На каком языке общается с человеком? Как удается ему понимать и обрабатывать столько разной информации – текст, картинки, звуки?

Человеку это удается просто – мы даже не задумываемся, как именно наш мозг справляется со всеми этими видами информации. Но ведь компьютер – не человек. Ни глаз, ни ушей у него нет, нет и мозга – в привычном нам значении этого слова. Думать, рассуждать компьютер не может. А значит, нужно как-то переводить все информацию, которую мы «скармливаем» нашему компьютеру, на понятный ему язык.

А понимает компьютер только один язык – цифровой! А в его азбуке нет букв – одни цифры – не зря же компьютерный язык называют еще и «цифровым». Да и цифр немного – всего две: 0 и 1.

Хорошая азбука, что и говорить! Такую даже первоклассник выучит за секунду… Да только мала - много ли слов составишь из ее «букв»?

Немного. Но для компьютера - вполне достаточно. «Слова» эти, в отличие от человеческого языка, одинаковы по длине, в каждом из них - ровно восемь знаков. И выглядят эти «слова» вот так:
10101000 10001111 10000110

Такая система счета называется «двоичной» - именно потому, что основана она всего на двух цифрах. Но благодаря ей можно описать все, что угодно: каждое двоичное «слово» может обозначать не только цифры, но и буквы…

Вот в бесконечный ряд этих «слов» и превращается вся информация, которая поступает в компьютер. И именно в таком виде она хранится и обрабатывается - а затем, когда это нужно человеку, снова превращается в привычные звуки, буквы, картинки…

Почему был выбран именно такой, не самый удобный и практичный «алфавит»? Причина проста: ведь вся информация в компьютере переносится электрическим током - точно так же, как кровь разносит кислород по всему нашему телу. А какой самый простой способ заставить ток передавать информацию? Либо дать ему доступ к какому-то важному участку, либо нет. Если сигнал есть - мы получаем единицу. Нет тока - понятное дело, перед нами ноль. Если бы мы захотели заложить в компьютерный алфавит большее количество сигналов, нам пришлось бы проделывать с электрическим током более сложные операции - например, постоянно менять напряжение. А так все удобно и просто - либо сигнал есть, либо его нет!

Конечно, двоичные числа иногда кажутся громоздкими – например, число 254 в двоичной системе выглядит так:
11111110

Но это только кажется. И вот тебе очень простой, но впечатляющий фокус для ваших знакомых. Как ты думаешь, сколько числе можно показывать с помощью пальцев рук? Тебе кажется – десять? А вот и не угадали: в двоичной системе с помощью десяти пальцев ты сможешь показать 1024 числа – любое число от 0 до 1023!
0 на двоичном языке – это 0000000000
1023 – 1111111111

Нетрудно догадаться, что двоичный «ноль» будет соответствовать согнутому пальцу, а единица-разогнутому!

Точно так же ты сможешь доказать, что число 4 и 100 – это одно и то же. И это правда – если число 4 принадлежит к нашей, десятичной системе, а 100 – к двоичной.